ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?
Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз. Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны? Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5? Примечание: [c] - целая часть, {c} - дробная часть числа c. |
Страница: 1 2 >> [Всего задач: 6]
При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа A + B?
Дед барона К.Ф.И. фон Мюнхгаузена построил квадратный замок, разделил его на 9 квадратных залов и в центральном разместил арсенал. Отец барона разделил каждый из восьми оставшихся залов на 9 равных квадратных холлов и во всех центральных холлах устроил зимние сады. Сам барон разделил каждый из 64 свободных холлов на 9 равных квадратных комнат и в каждой из центральных комнат устроил бассейн, а остальные сделал жилыми. Барон хвастается, что ему удалось обойти все жилые комнаты, побывав в каждой по одному разу, и вернуться в исходную (в каждой стене между двумя соседними жилыми комнатами проделана дверь). Могут ли слова барона быть правдой?
На стороне AB треугольника ABC внешним образом построен квадрат с центром O. Точки M и N середины сторон AC и BC соответственно, а длины этих сторон равны соответственно a и b. Найти максимум суммы OM + ON, когда угол ACB меняется.
Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5? Примечание: [c] - целая часть, {c} - дробная часть числа c.
В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке