Страница: 1 [Всего задач: 5]
Задача
98427
(#1)
|
|
Сложность: 3 Классы: 7,8,9
|
В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число,
кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.
На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3.
В каком отношении делит сторону DE биссектриса угла C?
Задача
98424
(#3)
|
|
Сложность: 4- Классы: 8,9
|
На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.
Задача
98430
(#4)
|
|
Сложность: 3 Классы: 6,7,8
|
На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того
же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и
чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну
точку внутри него). Как это сделать?
Задача
98431
(#5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по
очереди. Начинающий игру ставит в свободные клетки крестики, его партнер –
нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов,
в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность В = К – Н считается выигрышем игрока, который начинает. Найдите такое значение B, что
1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл
второй игрок;
2) второй игрок всегда может добиться того, что первый получит выигрыш не
больше B, как бы тот ни играл.
Страница: 1 [Всего задач: 5]