ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.

Вниз   Решение


Доказать, что из равенства     вытекает равенство     если k нечётно.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 132]      



Задача 108988

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Доказать, что из равенства     вытекает равенство     если k нечётно.

Прислать комментарий     Решение

Задача 109002

Темы:   [ Треугольник (построения) ]
[ Отношения линейных элементов подобных треугольников ]
[ Четырехугольники (экстремальные свойства) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.

Прислать комментарий     Решение

Задача 109012

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Отношение площадей подобных треугольников ]
[ Построения с помощью вычислений ]
Сложность: 3+
Классы: 8,9,10

В треугольнике провести прямую, параллельную одной из сторон, так, чтобы площадь отсечённого треугольника равнялась 1/k площади данного треугольника (k – натуральное число), а оставшуюся часть треугольника разделить прямыми на p равновеликих частей. (Предполагается, что у нас есть отрезок единичной длины.)

Прислать комментарий     Решение

Задача 109013

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На дуге AB есть произвольная точка M. Из середины K отрезка MB опущен перпендикуляр KP на прямую MA.
Доказать, что все прямые PK проходят через одну точку.

Прислать комментарий     Решение

Задача 109016

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Дано четыре положительных числа a, p, c, k, произведение которых равно 1. Доказать, что  a² + p² + c² + k² + ap + ac + pc + ak + pk + ck ≥ 10.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .