ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 132]      



Задача 109015

Темы:   [ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10

Показать, что если  a > b > 0,  то разность между средним арифметическим и средним геометрическим этих чисел находится между     и  

Прислать комментарий     Решение

Задача 109028

Темы:   [ Числовые таблицы и их свойства ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10

В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.

Прислать комментарий     Решение

Задача 109030

Темы:   [ Логарифмические неравенства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4-
Классы: 10,11

Что больше: log34 или log45?

Прислать комментарий     Решение

Задача 109038

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4-
Классы: 8,9,10

Решить систему уравнений

    1 − x1x2x3 = 0,
    1 + x2x3x4 = 0,
    1 − x3x4x5 = 0,
    1 + x4x5x6 = 0,
      ...
    1 − x47x48x49 = 0,
    1 + x48x49x50 = 0,
    1 − x49x50x1 = 0,
    1 + x50x1x2 = 0.

Прислать комментарий     Решение

Задача 109041

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 8,9,10

x1 – вещественный корень уравнения  x² + ax + b = 0,  x2 – вещественный корень уравнения  x² – ax – b = 0.
Доказать, что уравнение  x² + 2ax + 2b = 0  имеет вещественный корень, заключённый между x1 и x2.  (a и b – вещественные числа).

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .