Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Окружности S1 и S2 пересекаются в точках A и B, причем касательные к S1 в этих точках являются радиусами S2. На внутренней дуге S1 взята точка C и соединена с точками A и B прямыми. Докажите, что вторые точки пересечения этих прямых с S2 являются концами одного диаметра.

Вниз   Решение


С помощью циркуля и линейки постройте на данной прямой точку, равноудаленную от двух данных точек.

ВверхВниз   Решение


Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

ВверхВниз   Решение


Докажите по индукции формулу Бине:

Fn = $\displaystyle {\dfrac{\varphi^n-\widehat{\varphi}^{n}}{\sqrt5}}$,

где $ \varphi$ = $ {\dfrac{1+\sqrt5}{2}}$ — ``золотое сечение'' или число Фидия, а $ \widehat{\varphi}$ = $ {\dfrac{1-\sqrt5}{2}}$ (``фи с крышкой'') — сопряженное к нему.

ВверхВниз   Решение


Найдите угол при вершине осевого сечения конуса, если образующая конуса в два раза больше его высоты.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 7526]      



Задача 108807

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.
Прислать комментарий     Решение


Задача 109092

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 2
Классы: 8,9

Точка A лежит в плоскости α , ортогональная проекция отрезка AB на эту плоскость равна 1, AB = 2 . Найдите расстояние от точки B до плоскости α .
Прислать комментарий     Решение


Задача 109246

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Прямые и плоскости в пространстве ]
Сложность: 2
Классы: 10,11

Точки A , B , C и D не лежат в одной плоскости. Докажите, что прямые AB и CD не пересекаются.
Прислать комментарий     Решение


Задача 109296

Темы:   [ Конус ]
[ Площадь сечения ]
Сложность: 2
Классы: 10,11

Высота конуса равна h , а образующая равна l . Найдите радиус основания и площадь осевого сечения.
Прислать комментарий     Решение


Задача 109298

Тема:   [ Конус ]
Сложность: 2
Классы: 10,11

Найдите угол при вершине осевого сечения конуса, если образующая конуса в два раза больше его высоты.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .