|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть a, b, c – стороны треугольника. Докажите неравенство a³ + b³ + 3abc > c³. Существует ли такое натуральное число M, что никакое натуральное число, десятичная запись которого состоит лишь из нулей и не более чем 1988 единиц, не делится на M? Докажите, что Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников? |
Страница: 1 2 >> [Всего задач: 6]
Существует ли натуральное число, кратное 2007, сумма цифр которого равна 2007?
На рисунке изображены графики трёх квадратных трёчленов.
Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?
В выпуклом четырехугольнике ABCD выполняются равенства: ∠CBD = ∠CAB и ∠ACD = ∠ADB.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|