Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 7,8,9
|
За первый год население некоторой деревни возросло на n человек, а за второй – на 300 человек. При этом за первый год население увеличилось на 300%, а за второй – на n %. Сколько жителей стало в деревне?
|
|
Сложность: 3+ Классы: 7,8,9
|
Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее
к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?
|
|
Сложность: 3+ Классы: 7,8,9
|
В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?
В треугольник ABC с прямым углом C вписана окружность, касающаяся
сторон AC, BC и AB в точках M, K и N соответственно.
Через точку K провели прямую, перпендикулярную отрезку MN. Она пересекла катет AC в точке X. Докажите, что CK = AX.
|
|
Сложность: 4- Классы: 8,9,10
|
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт
по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет ещё одну карту, и так сколько угодно раз, пока сам не скажет "стоп". Может ли Фукс добиться того, чтобы после "стопа" каждая карта наверняка оказалась не там, где была вначале?
Страница: 1
2 >> [Всего задач: 6]