Страница:
<< 1 2 [Всего задач: 8]
Задача
109570
(#94.5.9.6)
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками
какие-то 1000 клеток прямоугольника
1
x 1994
. Если соседняя справа от карточки с числом
n
клетка свободна, то за один ход ее разрешается накрыть карточкой с числом
n+1
. Докажите, что
нельзя сделать более полумиллиона таких ходов.
Задача
108203
(#94.5.9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
Трапеция ABCD такова, что на её боковых сторонах AD и BC существуют такие точки P и Q соответственно, что ∠APB = ∠CPD, ∠AQB = ∠CQD.
Докажите, что точки P и Q равноудалены от точки пересечения диагоналей трапеции.
Задача
109572
(#94.5.9.8)
|
|
Сложность: 4+ Классы: 8,9,10
|
Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой
квадрата
n ×
n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые
хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один
способ покрытия квадрата
100
×100
, состоящего из квадратиков разбиения, неперекрывающимися
каемками пятидесяти квадратов.
(Каемки могут и не содержаться в квадрате
100
× 100
.)
Страница:
<< 1 2 [Всего задач: 8]