Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
109647
(#97.5.10.3)
|
|
Сложность: 4- Классы: 8,9,10
|
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
Задача
109648
(#97.5.10.4)
|
|
Сложность: 5- Классы: 10
|
Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.
Задача
109649
(#97.5.10.5)
|
|
Сложность: 4- Классы: 8,9,10
|
Существуют ли два квадратных трёхчлена ax² + bx + c и (a + 1)x² + (b + 1)x + (c + 1) с целыми коэффициентами, каждый из которых имеет по два целых корня?
Задача
108174
(#97.5.10.6)
|
|
Сложность: 4 Классы: 8,9
|
Окружность с центром O, вписанная в треугольник ABC, касается сторон AC, AB и BC в точках K, M и N соответственно. Медиана BB1 треугольника пересекает MN в точке D. Докажите, что точка O лежит на прямой DK.
Задача
109651
(#97.5.10.7)
|
|
Сложность: 5- Классы: 8,9,10
|
Найдите все такие тройки натуральных чисел m, n и l, что m + n = (НОД(m, n))², m + l = (НОД(m, l))², n + l = (НОД(n, l))².
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]