ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 109784  (#03.5.10.6)

Темы:   [ Ограниченность, монотонность ]
[ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Рациональные и иррациональные числа ]
[ Целая и дробная части. Принцип Архимеда ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Автор: Храбров А.

Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число;  an+1 = ⅕ an,  если an делится на 5;
an+1 = [ an],  если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.

Прислать комментарий     Решение

Задача 108127  (#03.5.10.7)

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.

Прислать комментарий     Решение

Задача 109786  (#03.5.10.8)

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 8,9,10

Автор: Храмцов Д.

Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .