|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружности S1 и S2 с центрами O1 и O2 пересекаются в точках A и B . Окружность, проходящая через точки O1 , O2 и A , вторично пересекает окружность S1 в точке D , окружность S2 – в точке E , а прямую AB – в точке C . Докажите, что CD=CB=CE . Натуральные числа m и n таковы, что НОК(m, n) + НОД(m, n) = m + n. Докажите, что одно из чисел m или n делится на другое. Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.). Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности. Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец? Дана функция f(x)= |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.). Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.
Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?
Натуральные числа m и n таковы, что НОК(m, n) + НОД(m, n) = m + n. Докажите, что одно из чисел m или n делится на другое.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|