Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 32]
Задача
110082
(#01.4.8.6)
|
|
Сложность: 4- Классы: 7,8,9
|
Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?
Задача
110083
(#01.4.8.7)
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
Задача
110084
(#01.4.8.8)
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Задача
110077
(#01.4.9.1)
|
|
Сложность: 4- Классы: 8,9
|
Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?
Задача
110070
(#01.4.9.2)
|
|
Сложность: 4 Классы: 8,9
|
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 32]