ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.) Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.)
Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке