ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м? Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°. Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
При каких натуральных n для любых чисел α , β , γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
|
Страница: << 1 2 [Всего задач: 8]
Расстоянием между числами a1a2a3a4a5 и b1b2b3b4b5 назовём максимальное i, для которого ai ≠ bi. Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?
При каких натуральных n для любых чисел α , β , γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке