Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Вниз   Решение


Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?

ВверхВниз   Решение


Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.

ВверхВниз   Решение


Даны квадратные трёхчлены  x² + 2a1x + b1x² + 2a2x + b2x² + 2a3x + b3.  Известно, что  a1a2a3 = b1b2b3 > 1.
Докажите, что хотя бы один из этих трёхчленов имеет два корня.

ВверхВниз   Решение


Уравнение  xn + a1xn–1 + ... + an–1x + an = 0  с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110153  (#04.4.10.1)

Темы:   [ Тригонометрические неравенства ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Сумма положительных чисел a, b, c равна π/2. Докажите, что  cos a + cos b + cos c > sin a + sin b + sin c.

Прислать комментарий     Решение

Задача 108210  (#04.4.10.2)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

В треугольнике ABC медианы AA' , BB' и CC' продлили до пересечения с описанной окружностью в точках A0 , B0 и C0 соответственно. Известно, что точка M пересечения медиан треугольника ABC делит отрезок AA0 пополам. Докажите, что треугольник A0B0C0 – равнобедренный.
Прислать комментарий     Решение


Задача 110160  (#04.4.10.3)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 8,9,10

Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
Докажите, что эти три числа имеют общий делитель, больший единицы.

Прислать комментарий     Решение

Задача 110154  (#04.4.10.4)

Темы:   [ Системы точек ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Наименьший или наибольший угол ]
[ Метод координат на плоскости ]
[ Пересекающиеся окружности ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 9,10,11

На плоскости отмечено N 3 различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более n различных расстояний. Докажите, что N (n+1)2 .
Прислать комментарий     Решение


Задача 110155  (#04.4.10.5)

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ НОД и НОК. Взаимная простота ]
[ Теорема Виета ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Уравнение  xn + a1xn–1 + ... + an–1x + an = 0  с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .