Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD.

Вниз   Решение


Автор: Фольклор

Сколько существует таких натуральных n, не превосходящих 2012, что сумма  1n + 2n + 3n + 4n  оканчивается на 0?

ВверхВниз   Решение


Автор: Перлин А.

Существует ли такой квадратный трёхчлен P(x) с целыми коэффициентами, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами?

ВверхВниз   Решение


Автор: Кноп К.А.

Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?

ВверхВниз   Решение


Автор: Трушин Б.

По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?

ВверхВниз   Решение


Имеется набор гирь со следующими свойствами:

  1. В нем есть 5 гирь, попарно различных по весу.
  2. Для любых двух гирь найдутся две другие гири того же суммарного веса.
Какое наименьшее число гирь может быть в этом наборе?

ВверхВниз   Решение


Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?

ВверхВниз   Решение


Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

ВверхВниз   Решение


Может ли в наборе из шести чисел  (a, b, c, a²/b, b²/c, c²/a},  где a, b, c – положительные числа, оказаться ровно три различных числа?

ВверхВниз   Решение


По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?

ВверхВниз   Решение


В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

ВверхВниз   Решение


В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

ВверхВниз   Решение


Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков мёда и 22 банки сгущенного молока, причём горшок мёда он съедал за 2 минуты, а банку молока – за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увёл Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок мёда за 5 минут, а банку молока – за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы. Чему равно это время? (Банку молока и горшок мёда можно делить на любые части.)

ВверхВниз   Решение


В треугольнике  ABC проведена биссектриса  BD (точка  D лежит на отрезке  AC ). Прямая  BD пересекает окружность  Ω , описанную около треугольника  ABC , в точках  B и  E . Окружность  ω , построенная на отрезке  DE как на диаметре, пересекает окружность  Ω в точках  E и  F . Докажите, что прямая, симметричная прямой  BF относительно прямой  BD , содержит медиану треугольника  ABC .

ВверхВниз   Решение


Автор: Левин А.

Города A , B , C и D расположены так, что расстояние от C до A меньше, чем расстояние от D до A , а расстояние от C до B меньше, чем расстояние от D до B . Докажите, что расстояние от города C до любой точки прямолинейной дороги, соединяющей города A и B , меньше, чем расстояние от D до этой точки.

ВверхВниз   Решение


Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно.

ВверхВниз   Решение


На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)

ВверхВниз   Решение


На столе лежат n спичек  (n > 1).  Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до  n – 1,  а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.

ВверхВниз   Решение


В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?

ВверхВниз   Решение


Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что уравнение  cx5 + bx + a = 0  также имеет три различных корня.

ВверхВниз   Решение


Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 110219  (#06.4.8.1)

Темы:   [ Десятичная система счисления ]
[ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого.

Прислать комментарий     Решение

Задача 110220  (#06.4.8.2)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Двое играют в такую игру. В начале по кругу стоят числа 1, 2, 3, 4. Каждым своим ходом первый прибавляет к двум соседним числам по 1, а второй меняет любые два соседних числа местами. Первый выигрывает, если все числа станут равными. Может ли второй ему помешать?

Прислать комментарий     Решение

Задача 110221  (#06.4.8.3)

Тема:   [ Задачи на движение ]
Сложность: 4
Классы: 7,8,9

В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)

Прислать комментарий     Решение

Задача 110222  (#06.4.8.4)

Темы:   [ Остовы многогранных фигур ]
[ Куб ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 7,8,9

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Прислать комментарий     Решение

Задача 110223  (#06.4.8.5)

Темы:   [ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .