|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°. Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что AB + BC = AD + DC. Вписанная окружность треугольника ABC касается стороны BC в точке K, а вневписанная — в точке L. Докажите, что CK = BL = (a + b - c)/2, где a, b, c — длины сторон треугольника. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]
Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Натуральные числа от 1 до 200 разбили на 50 множеств.
Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 68.
Даны n > 1 приведённых квадратных трёхчленов x² – a1x + b1, ..., x² – anx + bn, причём все 2n чисел a1, ..., an, b1, ..., bn различны.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|