|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°. Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что AB + BC = AD + DC. Вписанная окружность треугольника ABC касается стороны BC в точке K, а вневписанная — в точке L. Докажите, что CK = BL = (a + b - c)/2, где a, b, c — длины сторон треугольника. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 54]
Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn – целые?
Натуральные числа от 1 до 200 разбили на 50 множеств.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 54] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|