ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что

ÐPBA + ÐPCA = ÐPBC + ÐPCB.

Докажите, что APAI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 110770

Темы:   [ Углы между биссектрисами ]
[ Неравенство треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что

ÐPBA + ÐPCA = ÐPBC + ÐPCB.

Докажите, что APAI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.

Прислать комментарий     Решение

Задача 110773

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4+
Классы: 8,9,10,11

Найдите все такие пары  (x, y)  целых чисел, что  1 + 2x + 22x+1 = y².

Прислать комментарий     Решение

Задача 110774

Темы:   [ Итерации ]
[ Целочисленные и целозначные многочлены ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4+
Классы: 10,11

Пусть P(x) – многочлен степени  n > 1  с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
Qk(x) = P(P(...P(P(x))...))  (P применён k раз). Докажите, что существует не более n целых чисел t, при которых  Qk(t) = t.

Прислать комментарий     Решение

Задача 110772

Темы:   [ Неравенство Коши ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5-
Классы: 9,10,11

Определите наименьшее действительное число M, при котором неравенство   |ab(a² – b²) + bc(b² – c²) + ca(c² – a²)| ≤ M(a² + b² + c²)²   выполняется для любых действительных чисел a, b, c.

Прислать комментарий     Решение

Задача 110771

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 8,9,10,11

Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .