ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Решите в целых числах уравнение  (x² – y²)² = 1 + 16y.

Вниз   Решение


Доказать, что  7 + 7² + ... + 74K,  где K – любое натуральное число, делится на 400.

ВверхВниз   Решение


Числа x, y, z удовлетворяют равенству  x + y + z – 2(xy + yz + xz) + 4xyz = ½.  Докажите, что хотя бы одно из них равно ½.

ВверхВниз   Решение


Автор: Фольклор

Каждая пара противоположных сторон данного выпуклого шестиугольника обладает следующим свойством: расстояние между серединами равно /2 умноженное на сумму их длин. Докажите, что все углы в шестиугольнике равны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 16]      



Задача 111041

Темы:   [ Шестиугольники ]
[ Неравенства с медианами ]
[ Неравенства для углов треугольника ]
[ Правильный (равносторонний) треугольник ]
Сложность: 6-
Классы: 8,9,10,11

Автор: Фольклор

Каждая пара противоположных сторон данного выпуклого шестиугольника обладает следующим свойством: расстояние между серединами равно /2 умноженное на сумму их длин. Докажите, что все углы в шестиугольнике равны.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .