Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 39]
Биссектриса, медиана и высота некоторого треугольника, проведённые из трёх разных вершин, пересекаются в одной точке и делят этот треугольник на шесть треугольников (см.рисунок). Площади трёх закрашенных треугольников равны. Верно ли, что исходный треугольник равносторонний?
|
|
Сложность: 4- Классы: 8,9,10
|
Произведение положительных чисел х, у и z равно 1. Докажите, что (2 + х)(2 + у)(2 + z) ≥ 27.
|
|
Сложность: 4- Классы: 10,11
|
Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие
боковой поверхности конуса, попарно перпендикулярные друг другу.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного
замкнутого верёвочного контура, то игрок, сделавший последний ход, считается
проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?
|
|
Сложность: 4 Классы: 7,8,9
|
Кольцевая дорога поделена столбами на километровые участки, и известно, что количество столбов чётно. Один из столбов покрашен в жёлтый цвет, другой – в синий, а остальные – в белый. Назовем расстоянием между столбами длину кратчайшей из двух соединяющих их дуг. Найдите расстояние от синего столба до жёлтого, если сумма растояний от синего столба до белых равна 2008 км.
Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 39]