Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

a и b – две данные стороны треугольника.
  Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
  При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)

Вниз   Решение


На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2002.
Какие числа остались на доске?

ВверхВниз   Решение


Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

ВверхВниз   Решение


Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?

ВверхВниз   Решение


Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
  а)  k = 9;   б)  k = 8?

ВверхВниз   Решение


Приведённый квадратный трёхчлен  f(x) имеет два различных корня. Может ли так оказаться, что уравнение  f(f(x)) = 0  имеет три различных корня, а уравнение  f(f(f(x))) = 0  – семь различных корней?

ВверхВниз   Решение


Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

ВверхВниз   Решение


Найдите все положительные корни уравнения  xx + x1–x = x + 1.

ВверхВниз   Решение


Пусть a, b, c – стороны треугольника. Докажите неравенство  a³ + b³ + 3abc > c³.

ВверхВниз   Решение


В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

ВверхВниз   Решение


a, b, c – стороны треугольника. Докажите неравенство  

ВверхВниз   Решение


Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 111261  (#2293576)

Темы:   [ Разложение на множители ]
[ Показательные уравнения ]
Сложность: 3
Классы: 9,10,11

Найдите все положительные корни уравнения  xx + x1–x = x + 1.

Прислать комментарий     Решение

Задача 111262  (#2293576)

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

Прислать комментарий     Решение

Задача 111263  (#2293576)

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Прислать комментарий     Решение


Задача 111264  (#2293576)

Темы:   [ Непрерывность и компактность ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Непрерывная функция f(x) такова, что для всех действительных x выполняется неравенство: f(x2)-(f(x))2 . Верно ли, что функция f(x) обязательно имеет точки экстремума?
Прислать комментарий     Решение


Задача 111265  (#2293576)

Темы:   [ Неравенства с площадями ]
[ Удвоение медианы ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .