ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 111261  (#2293576)

Темы:   [ Разложение на множители ]
[ Показательные уравнения ]
Сложность: 3
Классы: 9,10,11

Найдите все положительные корни уравнения  xx + x1–x = x + 1.

Прислать комментарий     Решение

Задача 111262  (#2293576)

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

Прислать комментарий     Решение

Задача 111263  (#2293576)

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Прислать комментарий     Решение


Задача 111264  (#2293576)

Темы:   [ Непрерывность и компактность ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Непрерывная функция f(x) такова, что для всех действительных x выполняется неравенство: f(x2)-(f(x))2 . Верно ли, что функция f(x) обязательно имеет точки экстремума?
Прислать комментарий     Решение


Задача 111265  (#2293576)

Темы:   [ Неравенства с площадями ]
[ Удвоение медианы ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .