Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
|
|
Сложность: 4 Классы: 10,11
|
Непрерывная функция
f(
x)
такова, что для всех действительных
x выполняется неравенство:
f(
x2)
-(
f(
x))
2 . Верно ли, что функция
f(
x)
обязательно имеет точки экстремума?
|
|
Сложность: 4+ Классы: 8,9,10
|
В треугольнике
ABC точка
D – середина стороны
AB . Можно ли так расположить точки
E и
F на сторонах
AC и
BC
соответственно, чтобы площадь треугольника
DEF оказалась больше суммы площадей треугольников
AED и
BFD ?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
В каждой клетке шахматной доски сидят по два таракана. В некоторый момент времени каждый таракан переползает на соседнюю (по стороне) клетку, причём тараканы, сидевшие в одной клетке, переползают в разные клетки. Какое наибольшее количество клеток доски может после этого остаться свободным?
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если
α ,
β и
γ – углы остроугольного треугольника, то
sinα + sinβ + sinγ > 2
.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]