Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

Вниз   Решение


Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

ВверхВниз   Решение


Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

ВверхВниз   Решение


Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

ВверхВниз   Решение


Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5?

Примечание: [c] - целая часть, {c} - дробная часть числа c.

ВверхВниз   Решение


Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?

ВверхВниз   Решение


В треугольнике ABC угол A равен 120°, точка D лежит на биссектрисе угла A, и  AD = AB + AC.  Докажите, что треугольник DBC – равносторонний.

ВверхВниз   Решение


Автор: Калинин А.

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.

ВверхВниз   Решение


Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111327  (#1)

Темы:   [ Десятичная система счисления ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3-
Классы: 7,8,9

Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Прислать комментарий     Решение

Задача 111328  (#2)

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 3-
Классы: 7,8,9

В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.

Прислать комментарий     Решение

Задача 111329  (#3)

Темы:   [ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что  KM || AC.  Отрезки AM и KC пересекаются в точке O. Известно, что  AK = AO  и  KM = MC.  Докажите, что  AM = KB.

Прислать комментарий     Решение

Задача 111330  (#4)

Тема:   [ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10

Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?

Прислать комментарий     Решение

Задача 111331  (#5)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 6,7,8

Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .