ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите систему уравнений  (n > 2) 

     

    x1x2 = 1.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 111648  (#1)

Темы:   [ Раскладки и разбиения ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 10,11

У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.

Прислать комментарий     Решение

Задача 111649  (#2)

Тема:   [ Иррациональные уравнения ]
Сложность: 3+
Классы: 10,11

Решите систему уравнений  (n > 2) 

     

    x1x2 = 1.

Прислать комментарий     Решение

Задача 111650  (#3)

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь четырехугольника ]
[ Вписанные и описанные многоугольники ]
Сложность: 3+
Классы: 10,11

В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30.

Прислать комментарий     Решение

Задача 111651  (#4)

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?

Прислать комментарий     Решение

Задача 111652  (#5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 4-
Классы: 10,11

На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .