ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.
Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни.
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Последовательность (an) задана условиями a1= 1000000 , an+1=n[
Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке