Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова ИНТЕГРИРОВАНИЕ, а Маша сделала то же самое со словом СУПЕРКОМПЬЮТЕР. У кого получилось больше слов?

Вниз   Решение


Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

ВверхВниз   Решение


Ненулевые числа a, b, c таковы, что  ax² + bx + c > cx  при любом x. Докажите, что  cx² – bx + a > cx – b  при любом x.

ВверхВниз   Решение


Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Найдите количество удачных натуральных чисел, меньших 2010.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Начертите два четырехугольника с вершинами в узлах сетки, из которых можно сложить а) как треугольник, так и пятиугольник; б) и треугольник, и четырехугольник, и пятиугольник. Покажите, как это можно сделать.

ВверхВниз   Решение


Автор: Ивлев Б.М.

В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?

ВверхВниз   Решение


Автор: Шноль Д.Э.

В парке росли липы и клены. Кленов среди них было 60%. Весной в парке посадили липы, после чего кленов стало 20%. А осенью посадили клены, и кленов стало снова 60%. Во сколько раз увеличилось количество деревьев в парке за год?

ВверхВниз   Решение


В большую шкатулку положили 10 шкатулок поменьше. В каждую из вложенных шкатулок либо положили 10 еще поменьше, либо ничего не положили. В каждую из меньших опять положили или 10, или ни одной, и т.д. После этого оказалось ровно 2006 шкатулок с содержимым. Сколько пустых?

ВверхВниз   Решение


Автор: Шноль Д.Э.

У подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

ВверхВниз   Решение


Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115357  (#06.4.10.1)

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 7,8,9

Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)

Прислать комментарий     Решение

Задача 115367  (#06.4.10.2)

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?
Прислать комментарий     Решение


Задача 115359  (#06.4.10.3)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Углы между биссектрисами ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены биссектрисы AD , BE и CF , пересекающиеся в точке I . Серединный перпендикуляр к отрезку AD пересекает прямые BE и CF в точках M и N соответственно. Докажите, что точки A , I , M и N лежат на одной окружности.
Прислать комментарий     Решение


Задача 115360  (#06.4.10.4)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4+
Классы: 9,10

Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Найдите количество удачных натуральных чисел, меньших 2010.

Прислать комментарий     Решение

Задача 115361  (#06.4.10.5)

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10

Ненулевые числа a, b, c таковы, что  ax² + bx + c > cx  при любом x. Докажите, что  cx² – bx + a > cx – b  при любом x.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .