ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя и Вася играют на бирже. Некоторые дни удачные, и в такие дни капитал Пети увеличивается на 1000, а капитал Васи – на 10%. А остальные дни неудачные – и тогда капитал Пети уменьшается на 2000, а капитал Васи уменьшается на 20%. Через некоторое время капитал Пети оказался таким же, как был в начале. А что произошло с капиталом Васи: уменьшился он, увеличился или остался прежним?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115385  (#1)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 6,7,8

У Вани было некоторое количество печенья; он сколько-то съел, а потом к нему в гости пришла Таня, и оставшееся печенье они разделили поровну. Оказалось, что Ваня съел в пять раз больше печений, чем Таня. Какую долю от всего печенья Ваня съел к моменту Таниного прихода?

Прислать комментарий     Решение

Задача 115386  (#2)

Темы:   [ Теория алгоритмов ]
[ Таблицы и турниры (прочее) ]
Сложность: 2+
Классы: 6,7,8

В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?

Прислать комментарий     Решение

Задача 115387  (#3)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9

Петя и Вася играют на бирже. Некоторые дни удачные, и в такие дни капитал Пети увеличивается на 1000, а капитал Васи – на 10%. А остальные дни неудачные – и тогда капитал Пети уменьшается на 2000, а капитал Васи уменьшается на 20%. Через некоторое время капитал Пети оказался таким же, как был в начале. А что произошло с капиталом Васи: уменьшился он, увеличился или остался прежним?

Прислать комментарий     Решение

Задача 115388  (#4)

Темы:   [ Наглядная геометрия в пространстве ]
[ Малые шевеления ]
Сложность: 4+
Классы: 8,9,10,11

Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.
Прислать комментарий     Решение


Задача 115389  (#5)

Темы:   [ Неравенства с объемами ]
[ Объем тела равен сумме объемов его частей ]
[ Касающиеся сферы ]
[ Шар и его части ]
[ Объем шара, сегмента и проч. ]
[ Взвешивания ]
Сложность: 3+
Классы: 10,11

На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .