ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 115470

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?
Прислать комментарий     Решение


Задача 115471

Темы:   [ Задачи на проценты и отношения ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7,8

Карлсону подарили пакет с конфетами: шоколадными и карамельками. За первые 10 минут Карлсон съел 20% всех конфет, причем 25% из них составляли карамельки. После этого Карлсон съел еще три шоколадные конфеты, и доля карамелек среди съеденных Карлсоном конфет понизилась до 20%. Сколько конфет было в подаренном Карлсону пакете?

Прислать комментарий     Решение

Задача 115476

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7

Два десятка лимонов стоят столько же рублей, сколько дают лимонов на 500 рублей. Сколько стоит десяток лимонов?

Прислать комментарий     Решение

Задача 115487

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем 16 клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.


Прислать комментарий     Решение

Задача 115451

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3-
Классы: 8,9,10

Пусть α , β , γ и δ  — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .