ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли расположить на плоскости четыре равных многоугольника так, чтобы каждые два из них не имели общих внутренних точек, но имели общий отрезок границы?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 115894  (#8.6)

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли расположить на плоскости четыре равных многоугольника так, чтобы каждые два из них не имели общих внутренних точек, но имели общий отрезок границы?

Прислать комментарий     Решение

Задача 115895  (#8.7)

Темы:   [ Построение треугольников по различным элементам ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10,11

Вокруг треугольника ABC описали окружность Ω. Пусть L и W – точки пересечения биссектрисы угла A со стороной BC и окружностью Ω соответственно. Точка O – центр описанной окружности треугольника ACL. Восстановите треугольник ABC, если даны окружность Ω и точки W и O.

Прислать комментарий     Решение

Задача 115896  (#8.8)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Углы между биссектрисами ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10,11

Автор: Белухов Н.

Вписанная и вневписанная окружности треугольника ABC касаются стороны BC в точках M и N. Известно, что  ∠BAC = 2∠MAN.
Докажите, что  BC = 2MN.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .