ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Сфера касается боковых граней четырёхугольной пирамиды
SABCD в точках, лежащих на рёбрах AB , BC , CD , DA .
Известно, что высота пирамиды равна 2 Дан параллелограмм ABCD. Прямая, параллельная AB, пересекает
биссектрисы углов A и C в точках P и Q соответственно. Сторона основания правильной шестиугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося сторон основания и продолжений боковых рёбер пирамиды. Сторона основания правильной шестиугольной пирамиды равна a , боковое ребро равно b . Найдите радиус шара, касающегося всех рёбер пирамиды. Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному
разу, вернувшись последним ходом в исходную клетку.
Основанием пирамиды SABC является правильный треугольник
ABC со стороной 4 Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны. |
Страница: << 1 2 [Всего задач: 7]
Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.
В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём n ≠ m. Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.
Страница: << 1 2 [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке