Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 42]
|
|
Сложность: 3 Классы: 9,10,11
|
Основания описанной трапеции равны 2 и 11. Докажите, что продолжения боковых сторон трапеции пересекаются под острым углом.
|
|
Сложность: 3 Классы: 8,9,10,11
|
В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что 5(а – 1) = b + a². Сравните числа а и b.
|
|
Сложность: 3 Классы: 8,9,10
|
В остроугольном треугольнике АВС угол В равен 45°, АМ и CN – высоты, О – центр описанной окружности, Н – ортоцентр.
Докажите, что ОNHМ – параллелограмм.
|
|
Сложность: 3 Классы: 8,9,10
|
Найдите наименьшее натуральное n, при котором число А = n³ + 12n² + 15n + 180 делится на 23.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 42]