ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

В остроугольном треугольнике АВС угол В равен 45°, АМ и CN – высоты, О – центр описанной окружности, Н – ортоцентр.
Докажите, что ОNHМ – параллелограмм.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 116004

Темы:   [ Теорема косинусов ]
[ Описанные четырехугольники ]
[ Перенос стороны, диагонали и т.п. ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Основания описанной трапеции равны 2 и 11. Докажите, что продолжения боковых сторон трапеции пересекаются под острым углом.

Прислать комментарий     Решение

Задача 116005

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 8,9,10,11

В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?

Прислать комментарий     Решение

Задача 116012

Темы:   [ Тождественные преобразования ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что  5(а – 1) = b + a².  Сравните числа а и b.

Прислать комментарий     Решение

Задача 116013

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В остроугольном треугольнике АВС угол В равен 45°, АМ и CN – высоты, О – центр описанной окружности, Н – ортоцентр.
Докажите, что ОNHМ – параллелограмм.

Прислать комментарий     Решение

Задача 116014

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее натуральное n, при котором число  А = n³ + 12n² + 15n + 180  делится на 23.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .