Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

По окружности в одном направлении на равных расстояниях курсируют n поездов. На этой дороге в вершинах правильного треугольника расположены станции A, B и C (обозначенные по направлению движения). Ира входит на станцию A и одновременно Лёша входит на станцию B, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?

Вниз   Решение


На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

ВверхВниз   Решение


В однокруговом футбольном турнире играли  n > 4  команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
  а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
  б) При каком наименьшем n могут не найтись пять таких команд?

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

ВверхВниз   Решение


Автор: Фольклор

Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.

ВверхВниз   Решение


Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

ВверхВниз   Решение


Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
  а) это можно сделать, если  N + 1  – квадрат целого числа.
  б) если это можно сделать, то  N + 1  – квадрат целого числа.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116255  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 8,9

В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.

Прислать комментарий     Решение

Задача 116256  (#2)

Темы:   [ Комбинаторика (прочее) ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

У Миши есть 1000 одинаковых кубиков, у каждого из которых одна пара противоположных граней белая, вторая – синяя, третья – красная. Он собрал из них большой куб 10×10×10, прикладывая кубики друг к другу одноцветными гранями. Докажите, что у большого куба есть одноцветная грань.

Прислать комментарий     Решение

Задача 116257  (#3)

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9

Найдите все такие натуральные числа a и b, что  (a + b²)(b + a²)  является целой степенью двойки.

Прислать комментарий     Решение

Задача 116258  (#4)

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

Прислать комментарий     Решение

Задача 116259  (#5)

Тема:   [ Средние величины ]
Сложность: 4
Классы: 8,9

Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
  а) это можно сделать, если  N + 1  – квадрат целого числа.
  б) если это можно сделать, то  N + 1  – квадрат целого числа.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .