|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи При делении многочлена x1951 – 1 на x4 + x³ + 2x² + x + 1 получается частное и остаток. Найти в частном коэффициент при x14. Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
В прошлом году Миша купил смартфон, который стоил целое четырёхзначное число рублей. Зайдя в магазин в этом году, он заметил, что цена смартфона выросла на 20% и при этом состоит из тех же цифр, но в обратном порядке. Какую сумму Миша потратил на смартфон? Найдите все пары натуральных чисел (а, b), для которых выполняется равенство НОК(а, b) – НОД(а, b) = ab/5. |
Страница: 1 2 3 >> [Всего задач: 15]
Решите неравенство:
Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°?
В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?
Найдите все пары натуральных чисел (а, b), для которых выполняется равенство НОК(а, b) – НОД(а, b) = ab/5.
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и
Страница: 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|