|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружность ω, вписанная в остроугольный неравнобедренный треугольник ABC, касается стороны BC в точке D. Пусть точка I – центр окружности ω, а O – центр описанной окружности треугольника ABC. Описанная окружность треугольника AID, пересекает вторично прямую AO в точке E. Докажите, что длина отрезка AE равна радиусу окружности ω. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
Через вершины основания четырёхугольной пирамиды SABCD проведены прямые, параллельные противоположным боковым рёбрам (через вершину A – параллельно SC, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник ABCD – параллелограмм.
На плоскости нарисованы n > 2 различных векторов
a1, a2, ..., an с равными длинами. Оказалось, что все векторы –a1 + a2 + ... + an,
На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали k точек и построили выпуклый k-угольник с вершинами
Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.
Окружность ω, вписанная в остроугольный неравнобедренный треугольник ABC, касается стороны BC в точке D. Пусть точка I – центр окружности ω, а O – центр описанной окружности треугольника ABC. Описанная окружность треугольника AID, пересекает вторично прямую AO в точке E. Докажите, что длина отрезка AE равна радиусу окружности ω.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|