ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что  tg A + tg B = 2  и  ctg A + ctg B = 3.  Найдите  tg (A + B).

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116874  (#11.1)

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 2+
Классы: 10,11

Известно, что  tg A + tg B = 2  и  ctg A + ctg B = 3.  Найдите  tg (A + B).

Прислать комментарий     Решение

Задача 116875  (#11.2)

Темы:   [ Текстовые задачи (прочее) ]
[ Подсчет двумя способами ]
[ Деревья ]
Сложность: 3
Классы: 10,11

Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?

Прислать комментарий     Решение

Задача 116876  (#11.3)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 10,11

Функция f(x) такова, что для всех значений x выполняется равенство  f(x + 1) = f(x) + 2x + 3.  Известно, что  f(0) = 1.  Найдите f(2012).

Прислать комментарий     Решение

Задача 116877  (#11.4)

Темы:   [ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Точка Х расположена на диаметре АВ окружности радиуса R. Точки K и N лежат на окружности в одной полуплоскости относительно АВ,
а  ∠KXA = ∠NXB = 60°.  Найдите длину отрезка KN.

Прислать комментарий     Решение

Задача 116878  (#11.5)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 10,11

В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .