|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи a) Придумайте три правильные несократимые дроби, сумма которых – целое число, а если каждую из этих дробей "перевернуть" (то есть заменить на
обратную), то сумма полученных дробей тоже будет целым числом. Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно? |
Страница: 1 2 >> [Всего задач: 6]
Известно, что tg A + tg B = 2 и ctg A + ctg B = 3. Найдите tg (A + B).
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Функция f(x) такова, что для всех значений x выполняется равенство f(x + 1) = f(x) + 2x + 3. Известно, что f(0) = 1. Найдите f(2012).
Точка Х расположена на диаметре АВ окружности радиуса R.
Точки K и N лежат на окружности в одной полуплоскости относительно АВ,
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|