Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.

Вниз   Решение


Докажите, что площадь S треугольника равна abc/4R.

ВверхВниз   Решение


Маляр-хамелеон ходит по клетчатой доске как хромая ладья (на одну клетку по вертикали или горизонтали). Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размером 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке?

ВверхВниз   Решение


Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?

ВверхВниз   Решение


Девять одинаковых воробьёв склёвывают меньше, чем 1001 зёрнышко, а десять таких же воробьёв склёвывают больше, чем 1100 зёрнышек. По скольку зёрнышек склёвывает каждый воробей?

ВверхВниз   Решение


Поместится ли все население Земли, все здания и сооружения на ней в куб с длиной ребра 3 километра?

ВверхВниз   Решение


Число A положительно, В отрицательно, а C равно нулю. Каков знак числа AB+ AC+BC?

ВверхВниз   Решение


Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

ВверхВниз   Решение


Автор: Фольклор

Известно, что  tg α + tg β = p,  ctg α + ctg β = q.  Найдите   tg(α + β).

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 116985  (#10.1.1)

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Известно, что  tg α + tg β = p,  ctg α + ctg β = q.  Найдите   tg(α + β).

Прислать комментарий     Решение

Задача 116986  (#10.1.2)

Темы:   [ Векторы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Прислать комментарий     Решение

Задача 116987  (#10.1.3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году.
А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?

Прислать комментарий     Решение

Задача 116993  (#10.3.3)

Темы:   [ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

Прислать комментарий     Решение

Задача 116988  (#10.2.1)

Темы:   [ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Дан многочлен P(x) с целыми коэффициентами. Известно, что  Р(1) = 2013,  Р(2013) = 1,  P(k) = k,  где k – некоторое целое число. Найдите k.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .