ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Класс:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Что больше: 1234567·1234569 или 1234568²? Докажите, что 479 < 2100 + 3100 < 480. На прямых BC, CA и AB взяты точки A1, B1 и C1,
причем точки A1, B1 и C1 лежат на одной прямой. Прямые,
симметричные прямым AA1, BB1 и CC1 относительно соответствующих
биссектрис треугольника ABC, пересекают прямые BC, CA и AB в
точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат
на одной прямой.
Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100? Дано 10 натуральных чисел: a1 < a2 < a3 < ... < a10. Доказать, что их наименьшее общее кратное не меньше 10a1. В тридевятом царстве есть только два вида монет: 16 и 27 тугриков. Можно ли заплатить за одну тетрадку ценой в 1 тугрик и получить сдачу? Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов? На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1? В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC. Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга. Докажите, что при аффинном преобразовании параллельные прямые
переходят в параллельные.
В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах. Докажите, что растяжение плоскости является аффинным преобразованием.
Пусть число α задаётся десятичной дробью Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1
Что больше: 10...01/10...01 (в записи числа в числителе – 1984 нуля, в знаменателе – 1985) или 10...01/10...01 (в числителе – 1985 нулей, в знаменателе – 1986). В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз? Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C. На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу? В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный? В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз? Докажите, что число 11999 + 21999 + ... + 161999 делится на 17. Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?
На хоккейном поле лежат три шайбы А, В и С.
Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?
На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно диагонали.
Можно ли разменять 25 рублей при помощи десяти купюр достоинством в 1, 3 и 5 рублей?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке