Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Что больше:  1234567·1234569  или  1234568²?

Вниз   Решение


Докажите, что  479 < 2100 + 3100 < 480.

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1, причем точки A1, B1 и C1 лежат на одной прямой. Прямые, симметричные прямым AA1, BB1 и CC1 относительно соответствующих биссектрис треугольника ABC, пересекают прямые BC, CA и AB в точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат на одной прямой.

ВверхВниз   Решение


Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?

ВверхВниз   Решение


Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

ВверхВниз   Решение


В тридевятом царстве есть только два вида монет: 16 и 27 тугриков. Можно ли заплатить за одну тетрадку ценой в 1 тугрик и получить сдачу?

ВверхВниз   Решение


Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка A1 так, что  BA1 : A1C = 2 : 1.  В каком отношении медиана CC1 делит отрезок AA1?

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что  A1C·BC = B1C·AC.

ВверхВниз   Решение


Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга.

ВверхВниз   Решение


Докажите, что при аффинном преобразовании параллельные прямые переходят в параллельные.

ВверхВниз   Решение


В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Найдите сторону квадрата.

ВверхВниз   Решение


Докажите, что растяжение плоскости является аффинным преобразованием.

ВверхВниз   Решение


Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

ВверхВниз   Решение


Касательные к описанной окружности неравнобедренного треугольника ABC в точках A, B и C пересекают продолжения сторон в точках A1, B1 и C1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.=-1



ВверхВниз   Решение


Что больше:  10...01/10...01  (в записи числа в числителе – 1984 нуля, в знаменателе – 1985) или  10...01/10...01  (в числителе – 1985 нулей, в знаменателе – 1986).

ВверхВниз   Решение


В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу?

ВверхВниз   Решение


В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

ВверхВниз   Решение


В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?

ВверхВниз   Решение


Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

ВверхВниз   Решение


Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 30284

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 2+
Классы: 6,7

Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Прислать комментарий     Решение

Задача 30286

Темы:   [ Четность и нечетность ]
[ Четность перестановки ]
Сложность: 2+
Классы: 6,7

На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Прислать комментарий     Решение

Задача 30291

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?

Прислать комментарий     Решение

Задача 30294

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Симметрия помогает решить задачу ]
Сложность: 2+
Классы: 5,6,7

На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно диагонали.
Докажите, что одна из шашек расположена на диагонали.

Прислать комментарий     Решение

Задача 30297

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

Можно ли разменять 25 рублей при помощи десяти купюр достоинством в 1, 3 и 5 рублей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .