ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 30285

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3
Классы: 6,7

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Прислать комментарий     Решение

Задача 35780

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7?

Прислать комментарий     Решение

Задача 108732

Темы:   [ Арифметика остатков (прочее) ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9

У Ивана-царевича есть два волшебных меча. Первым он может отрубить Змею Горынычу 21 голову. Вторым – 4 головы, но при этом у Змея Горыныча отрастает 2006 голов. Может ли Иван отрубить Змею Горынычу все головы, если в самом начале у него было 100 голов? (Если, например, у Змея Горыныча осталось лишь три головы, то рубить их ни тем, ни другим мечом нельзя.)

Прислать комментарий     Решение

Задача 108751

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9

На столе стоят 13 перевёрнутых стаканов. Разрешается одновременно переворачивать любые два стакана.
Можно ли добиться того, чтобы все стаканы стояли правильно?

Прислать комментарий     Решение

Задача 30757

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7,8,9

В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .