Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE.

Вниз   Решение


На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?

ВверхВниз   Решение


Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
Докажите, что точка P принадлежит чётному числу треугольников с вершинами в точках A1,..., A2n.

ВверхВниз   Решение


Автор: Ивлев Б.М.

В клетках квадратной таблицы 4×4 расставлены знаки  +  и  – ,   как показано на рисунке.

Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.

ВверхВниз   Решение


Существуют ли  а) 6,  б)15,  в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма  a + b  делится на разность  a − b?

ВверхВниз   Решение


В выпуклом четырехугольнике $ABCD$ центры описанной и вписанной окружностей треугольника $ABC$ совпадают соответственно с центрами вписанной и описанной окружностей треугольника $ADC$. Известно, что $AB=1$. Найдите длины остальных сторон и углы четырехугольника.

ВверхВниз   Решение


Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

ВверхВниз   Решение


Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную 1. Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее $ {\frac{1}{9}}$.

ВверхВниз   Решение


В пробирке находятся марсианские амёбы трёх типов A, B и C. Две амёбы любых двух разных типов могут слиться в одну амёбу третьего типа. После нескольких таких слияний в пробирке оказалась одна амёба. Каков её тип, если исходно амёб типа A было 20 штук, типа B – 21 штука и типа C – 22 штуки?

ВверхВниз   Решение


Доказать, что не существует таких натуральных чисел x, y, z, k, что  xk + yk = zk  при условии  x < k,  y < k.

ВверхВниз   Решение


Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 209]      



Задача 30291  (#04.011)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?

Прислать комментарий     Решение

Задача 60638  (#04.012)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

Прислать комментарий     Решение

Задача 58172  (#04.013)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 8,9,10

Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
Докажите, что точка P принадлежит чётному числу треугольников с вершинами в точках A1,..., A2n.

Прислать комментарий     Решение

Задача 35075  (#04.014)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?

Прислать комментарий     Решение

Задача 30305  (#04.015)

Темы:   [ Четность и нечетность ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 6,7,8

К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .