ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек. Вычислите суммы: а) 1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1); б) a sin φ + ... + ak sin kφ + ... ( |a| < 1); в) г) а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться). На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым? Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в
записи которых каждая из этих цифр встречается ровно один раз. Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков? Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр. Окружности
На стороны BC и CD параллелограмма ABCD (или
на их продолжения) опущены перпендикуляры AM и AN. Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток. В трапецию ABCD (BC || AD) вписана окружность,
касающаяся боковых сторон AB и CD в точках K и L
соответственно, а оснований AD и BC в точках M и N.
Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?
На отрезке MN построены подобные, одинаково ориентированные
треугольники AMN, NBM и MNC (см. рис.). Углы треугольника ABC связаны соотношением 3α + 2β = 180°. Докажите, что a² + bc = c². Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей, Сколько ожерелий можно составить из пяти одинаковых красных бусинок и двух одинаковых синих бусинок? Сколькими способами из полной колоды (52 карты) можно выбрать |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
Сколько различных четырёхзначных чисел, делящихся на 4, можно составить из цифр 1, 2, 3 и 4,
Труппа театра состоит из 20 артистов. Сколькими способами можно выбрать из неё в течение двух вечеров по шесть человек для участия в спектаклях так, чтобы ни один артист не участвовал в двух спектаклях?
а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
Сколькими способами из полной колоды (52 карты) можно выбрать
Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке