Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите периметр треугольника, один из углов которого равен α , а радиусы вписанной и описанной окружностей равны r и R .

Вниз   Решение


Центр окружности, описанной около треугольника, совпадает с центром вписанной окружности. Найдите углы треугольника.

ВверхВниз   Решение


За один ход разрешается или удваивать число, или стирать его последнюю цифру. Можно ли за несколько ходов получить из числа 458 число 14?

ВверхВниз   Решение


Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

ВверхВниз   Решение


Автор: Русских И.

Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.

ВверхВниз   Решение


Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 559]      



Задача 30367  (#010)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

Прислать комментарий     Решение

Задача 30368  (#011)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 6,7,8

Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

Прислать комментарий     Решение

Задача 30369  (#012)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Решите в натуральных числах уравнение:
  а)  x² – y² = 31;
  б)  x² – y² = 303.

Прислать комментарий     Решение

Задача 30370  (#013)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9,10

Решите в целых числах уравнение:  x³ + x² + x – 3 = 0.

Прислать комментарий     Решение

Задача 30371  (#014)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Докажите, что для любых натуральных чисел a и b верно равенство  НОД(a, b)НОК(a, b) = ab.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .