ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

p и  8p2 + 1  – простые числа. Найдите p.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



Задача 30389  (#032)

Темы:   [ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8

Найдите остаток от деления 31989 на 7.

Прислать комментарий     Решение

Задача 30390  (#033)

Темы:   [ Деление с остатком ]
[ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что  22225555 + 55552222  делится на 7.

Прислать комментарий     Решение

Задача 30391  (#034)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Найдите последнюю цифру числа 777.

Прислать комментарий     Решение

Задача 30392  (#035)

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

а) p,  p + 10,  p + 14  – простые числа. Найдите p.

б) p,  2p + 1,  4p + 1  – простые числа. Найдите p.

Прислать комментарий     Решение

Задача 30393  (#036)

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

p и  8p2 + 1  – простые числа. Найдите p.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .