ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите НОД(2100 – 1, 2120 – 1).

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 559]      



Задача 30412  (#055)

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Докажите, что дробь несократима ни при каком натуральном n.

Прислать комментарий     Решение

Задача 30413  (#056)

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Найдите НОД(2100 – 1, 2120 – 1).

Прислать комментарий     Решение

Задача 30414  (#057)

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Найдите  НОД(111...111, 11...11)  – в записи первого числа 100 единиц, в записи второго – 60.

Прислать комментарий     Решение

Задача 30415  (#001)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

Между девятью планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля – Меркурий, Плутон – Венера, Земля – Плутон, Плутон – Меркурий, Меркурий – Венера, Уран – Нептун, Нептун – Сатурн, Сатурн – Юпитер, Юпитер – Марс и Марс – Уран. Можно ли добраться с Земли до Марса?

Прислать комментарий     Решение

Задача 30416  (#003)

Тема:   [ Обход графов ]
Сложность: 3
Классы: 6,7

Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .