|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Написать вариант алгоритма Евклида, использующий соотношения
НОД(2a, 2b) = 2·НОД(a,b),
не включающий деления с остатком, а использующий лишь
деление на 2 и проверку чётности. (Число действий
должно быть порядка
log k для исходных данных,
не превосходящих k.)
В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими. |
Страница: << 1 2 3 4 >> [Всего задач: 18]
Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно.
Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?
В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен.
В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).
Страница: << 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|