ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что из каждого города можно добраться до любого другого (возможно, проезжая через другие города).

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 30425  (#012)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно.

Прислать комментарий     Решение

Задача 30426  (#013)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

Прислать комментарий     Решение

Задача 30427  (#014)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что из каждого города можно добраться до любого другого (возможно, проезжая через другие города).

Прислать комментарий     Решение

Задача 30428  (#015)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 7,8

Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен.

Прислать комментарий     Решение

Задача 30429  (#016)

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .