ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи План города имеет схему, изображенную на рисунке. На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх". В треугольнике ABC проведены высота AH, биссектриса BL и медиана CM. Известно, что в треугольнике HLM прямая AH является высотой, а BL – биссектрисой. Докажите, что CM является в этом треугольнике медианой. Даны окружность, ее диаметр AB и точка P.
С помощью одной линейки проведите через точку P перпендикуляр к прямой AB.
При каких n многочлен (x + 1)n – xn – 1 делится на: Докажите, что число 11...11 (2n единиц) – составное. Пятиугольник ABCDE, все углы которого тупые, вписан в окружность ω. Продолжения сторон AB и CD пересекаются в точке E1; продолжения сторон BC и DE – в точке A1. Касательная, проведённая в точке B к описанной окружности треугольника BE1C, пересекает ω в точке B1; аналогично определяется точка D1. Докажите, что B1D1 || AE. Докажите, что число a1a2...anan...a2a1 – составное. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 99]
Пусть A – сумма цифр числа 44444444, а B – сумма цифр числа A. Найдите сумму цифр числа B.
Докажите, что a1a2...an = an – an–1 + ... + (–1)n (mod 11).
Докажите, что число 11...11 (2n единиц) – составное.
Докажите, что число a1a2...anan...a2a1 – составное.
Пусть a, b, c, d – различные цифры. Докажите, что cdcdcdcd не делится на aabb.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 99]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке