ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнение в целых числах:  x³ + 3 = 4y(y + 1).

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 559]      



Задача 30668  (#082)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 6,7

Решите уравнение в целых числах:  x³ + 3 = 4y(y + 1).

Прислать комментарий     Решение

Задача 30669  (#083)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 6,7

Решите в натуральных числах уравнение  x² + y² = z².

Прислать комментарий     Решение

Задача 30670  (#084)

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 8,9,10,11

Решите уравнение  x² – 5y² = 1  в целых числах.

Прислать комментарий     Решение

Задача 30671  (#085)

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 8,9

Пусть  ka ≡ kb (mod m),  k и m взаимно просты. Тогда  a ≡ b (mod m).

Прислать комментарий     Решение

Задача 30672  (#086)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9

Пусть  ka ≡ kb (mod kn).  Тогда  a ≡ b (mod n).

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .