Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Гениальные математики. а) Каждому из двух гениальных математиков сообщили по натуральному числу, причем им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: "Известно ли тебе мое число?" Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики предполагаются правдивыми и бессмертными.)
б) Как изменится число заданных вопросов, если с самого начала известно, что данные числа не превосходят 1000?

Вниз   Решение


Найти корни уравнения   

ВверхВниз   Решение


Пусть  ka ≡ kb (mod m),  k и m взаимно просты. Тогда  a ≡ b (mod m).

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]      



Задача 30667  (#081)

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

Прислать комментарий     Решение

Задача 30668  (#082)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 6,7

Решите уравнение в целых числах:  x³ + 3 = 4y(y + 1).

Прислать комментарий     Решение

Задача 30669  (#083)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 6,7

Решите в натуральных числах уравнение  x² + y² = z².

Прислать комментарий     Решение

Задача 30670  (#084)

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 8,9,10,11

Решите уравнение  x² – 5y² = 1  в целых числах.

Прислать комментарий     Решение

Задача 30671  (#085)

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 8,9

Пусть  ka ≡ kb (mod m),  k и m взаимно просты. Тогда  a ≡ b (mod m).

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .