ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Гениальные математики. а) Каждому из двух
гениальных математиков сообщили по натуральному числу, причем им
известно, что эти числа отличаются на единицу. Они поочередно
спрашивают друг друга: "Известно ли тебе мое число?"
Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики
предполагаются правдивыми и бессмертными.)
Найти корни уравнения Пусть ka ≡ kb (mod m), k и m взаимно просты. Тогда a ≡ b (mod m). |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]
Докажите, что уравнение 1/x – 1/y = 1/n имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.
Решите уравнение в целых числах: x³ + 3 = 4y(y + 1).
Решите в натуральных числах уравнение x² + y² = z².
Решите уравнение x² – 5y² = 1 в целых числах.
Пусть ka ≡ kb (mod m), k и m взаимно просты. Тогда a ≡ b (mod m).
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке